【严平稳过程】
设 $\{X(t),t\in T\}$ 是一随机过程,若对任意的 $n\geq 1$ 和任意的 $t_1,t_2,\cdots,t_n\in T$ 以及使 $t_1+\tau,t_2+\tau,\cdots,t_n+\tau\in T$ 的任意实数 $\tau$,$n$ 维随机向量 $(X(t_1),X(t_2),\cdots,X(t_n))$ 和 $(X(t_1+\tau),X(t_2+\tau),\cdots,X(t_n+\tau))$ 有相同的联合分布函数,即
则称 $\{X(t),t\in T\}$ 是严平稳过程,或称 $\{X(t),t\in T\}$ 具严平稳性