| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 
 | #include <stdio.h>#include <math.h>
 #define BLOCK_SIZE 16
 const double EPS = 1E-6;
 
 
 __global__ void gpu_matrix_mult_shared(int *a,int *b, int *c, int m, int n, int k) {
 
 
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 
 
 __shared__ int s_a[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ int s_b[BLOCK_SIZE][BLOCK_SIZE];
 
 int sum = 0;
 
 for (int sub = 0; sub < gridDim.x; sub++) {
 
 
 
 
 int index_a = (sub * BLOCK_SIZE + threadIdx.x) + row * n;
 if (row < m && (sub * BLOCK_SIZE + threadIdx.x) < n) {
 s_a[threadIdx.y][threadIdx.x] = a[index_a];
 } else {
 s_a[threadIdx.y][threadIdx.x] = 0;
 }
 
 
 
 
 int index_b = col + n * (sub * BLOCK_SIZE + threadIdx.y);
 if (col < n && (sub * BLOCK_SIZE + threadIdx.y) < k) {
 s_b[threadIdx.y][threadIdx.x] = b[index_b];
 } else {
 s_b[threadIdx.y][threadIdx.x] = 0;
 }
 
 
 __syncthreads();
 
 
 for (int i = 0; i < BLOCK_SIZE; i++) {
 sum += s_a[threadIdx.y][i] * s_b[i][threadIdx.x];
 }
 __syncthreads();
 
 if (row < m && col < k) {
 c[row * k + col] = sum;
 }
 }
 }
 
 
 void cpu_matrix_mult(int *a, int *b, int *c, int m, int n, int k) {
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < k; j++) {
 int sum = 0;
 for (int h = 0; h < n; h++) {
 sum += a[i * n + h] * b[h * k + j];
 }
 c[i * k + j] = sum;
 }
 }
 }
 
 
 void check(int *c_cpu, int *c_gpu, int m, int k) {
 int error = false;
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < k; j++) {
 if(fabs(c_gpu[i * k + j] - c_cpu[i * k + j]) > EPS) {
 error = true;
 }
 }
 }
 printf("检查结果:%s\n", error ? "Errors" : "Pass");
 }
 
 int main() {
 int m = 5;
 int n = 5;
 int k = 5;
 
 
 int *a, *b, *c_gpu, *c_cpu;
 
 cudaMallocManaged((void **) &a, sizeof(int) * m * n);
 cudaMallocManaged((void **) &b, sizeof(int) * n * k);
 cudaMallocManaged((void **) &c_gpu, sizeof(int) * m * k);
 cudaMallocManaged((void **) &c_cpu, sizeof(int) * m * k);
 
 
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++) {
 a[i * n + j] = rand() % 1024;
 }
 }
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < k; j++) {
 b[i * k + j] = rand() % 1024;
 }
 }
 
 
 unsigned int grid_rows = (m + BLOCK_SIZE - 1) / BLOCK_SIZE;
 unsigned int grid_cols = (k + BLOCK_SIZE - 1) / BLOCK_SIZE;
 dim3 grid(grid_cols, grid_rows);
 dim3 block(BLOCK_SIZE, BLOCK_SIZE);
 
 
 gpu_matrix_mult_shared<<<grid, block>>>(a, b, c_gpu, m, n, k);
 
 
 cudaDeviceSynchronize();
 
 
 printf("GPU执行结果:\n");
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < k; j++) {
 printf("%d ", c_gpu[i * k + j]);
 }
 printf("\n");
 }
 
 
 cpu_matrix_mult(a, b, c_cpu, m, n, k);
 
 
 printf("CPU执行结果:\n");
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < k; j++) {
 printf("%d ", c_cpu[i * k + j]);
 }
 printf("\n");
 }
 
 
 check(c_cpu, c_gpu, m, k);
 
 
 cudaFree(a);
 cudaFree(b);
 cudaFree(c_cpu);
 cudaFree(c_gpu);
 
 return 0;
 }
 
 |