Alex_McAvoy

想要成为渔夫的猎手

假设检验

【概述】

统计推断的两大基本问题,一类是估计问题,另一类即假设检验问题

在总体的分布函数完全未知或只知其形式,但不知其参数的情况下,为推断总体的某些未知特性,提出某些关于总体的假设,例如提出总体服从泊松分布的假设,又如正态总体提出数学期望等于 μ0 的假设等

需要的根据样本对所提出的假设作出接受还是拒绝的决策,作出决策的这一过程,即假设检验

简单来说,假设检验就是先对总体参数提出一个假设值,然后利用样本信息来判断这一假设是否成立

处理参数的假设检验问题步骤如下:

  1. 根据实际问题,提出原假设 H0 与备择假设 H1
  2. 给定显著性水平 α 与样本容量 n
  3. 确定检验统计量与拒绝域形式
  4. P{H0H0}α 求出拒绝域
  5. 取样,根据样本观察值作出决策,是接受 H0 还是拒绝 H0

【原假设与备择假设】

在假设检验时,通常会设置两个互斥的假设:

  • 原假设 H0:一般是想要拒绝的假设,其设置一般为 =,,
  • 备择假设 H1:一般是想要接受的假设,其设置一般为 ,>,<

例如:某车间用一台包装机包装葡萄糖,袋装糖的净重是一个随机变量,其服从正态分布,当机器正常时,其均值为 0.5kg,标准差为 0.015kg,某日开工后为检验包装机是否正常,随机地抽取它所包装的糖 9 袋,称得净重为(kg)

0.4970.5060.5180.5240.4980.5110.5200.5150.512

问该机器是否正常?

μ,σ 分别表示这一天袋装糖的净重总体 X 的均值和标准差,由于长期实践表明标准差比较稳定,故设 σ=0.015,那么就有 XN(μ,0.015),此时 μ 未知

问题是根据样本值来判断 μ=0.5 还是 μ0.5,为此提出两个相互对立的假设:

H0:μ=μ0=0.5H1:μ=μ0

然后,给出一个合理的法则,根据这一法则,利用已知样本作出决策是接受 H0(拒绝 H1),还是拒绝 H0(接受 H1

如果作出的决策是接受 H0,就认为 μ=μ0=0.5,即认为机器工作是正常的,否则认为机器工作是不正常的

【两类错误与显著性检验】

通过样本数据来判断总体参数的假设是否成立,但样本是随机的,因而有可能出现小概率的错误,这种错误分两种:

  • 弃真错误(第 Ⅰ 类错误、α 错误):原假设实际上是真的,但通过样本估计总体后,拒绝了原假设
  • 取伪错误(第 Ⅱ 类错误、β 错误):原假设实际上是假的,但通过样本估计总体后,接受了原假设

对于弃真错误来说,将这中错误的概率记为 P{H0},由于无法排除犯这种错误的可能性,因此自然希望将犯这类错误的概率控制在一定限度之内,即给出一个较小的数 α,0<α<1,使犯这类错误的概率不超过 α,即:

P{H0}α

这个 α 被称为显著性水平,在假设检验之前通常会规定这个值的大小

同理,对于取伪错误来说,有:

P{H0}β

这也是原假设一般都是想要拒绝的假设的原因,因为原假设被拒绝,如果出错的话,只会犯弃真错误,而犯弃真错误的概率已经被规定的显著性水平所控制了,这样对统计者来说更容易控制,将错误影响降到最小

在确定检验法则时,应尽可能使犯两类错误的概率都较小,但一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往增大,若要使犯两类错误的概率都减小,除非增加样本容量

在给定样本容量的情况下,一般来说,总是控制犯第 Ⅰ 类错误的概率,使它不大于 αα 的大小视具体情况而定,通常取 0.1,0.05,0.01,0.005 等值

这种只对犯第 Ⅰ 类错误的概率加以控制,而不考虑犯第 Ⅱ 类错误的概率的检验,称为显著性检验


接上例,在给出原假设 H0 和备择假设 H1 后,可以发现要检验的假设涉及总体均值 μ,那么首先能够想到的就是能否借助样本均值 X 这一统计量进行判断

由于 Xμ 的无偏估计,X 的观察值 x 的大小在一定程度上反映了 μ 的大小,为此若假设 H0 为真,那么观察值 xμ0 的偏差 |xμ0| 一般不应太大,若 |xμ0| 过大,就怀疑 H0 的正确性而拒绝 H0

同时,考虑到当 H0 为真时,有 Xμ0σ/nN(0,1),而衡量 |xμ0| 的大小可归结为衡量 Xμ0σ/n 的大小,为此可设定一个正数 k,当观察值 x 满足 Xμ0σ/nk 时就拒绝 H0,反之就接受 H0

为确定常数 k,给出显著性水平 α,那么有:

P{H0H0}=Pμ0{|Xμ0σ/n|k}=α

由于当 H0 为真时,Z=Xμ0σ/nN(0,1),那么由标准正态分布分位点的定义可得:

k=zα2

因而,若检验统计量 Z=Xμ0σ/n 的观察值满足:

|z|=|xμ0σ/n|k=zα2

此时 xμ0 的差异是显著的,那么拒绝 H0,反之, xμ0 的差异是不显著,接受 H0

在本例中,若给出显著性水平 α=0.05,那么有 k=z0.05/2=z0.025=1.96,又已知 n=9,σ=0.015,由样本可得 x=0.511,故有

|xμ0σ/n|=2.2>1.96

于是拒绝 H0,认为这天包装机工作不正常

【拒绝域与临界点】

当检验统计量取某个区域 C 中的值时,拒绝原假设 H0,则称 C拒绝域,拒绝域的边界点称为临界点

在上例中,拒绝域为:

|z|zα2

临界点为:

z=zα2z=zα2

【双边检验与单边检验】

形如上例中的备择假设 H1:μ=μ0,表示 μ 可能大于 μ0,也可能小于 μ0,这种假设称为双边备择假设,其假设检验被称为双边假设检验

而形如

H0:μμ0H1:μ>μ0

的假设检验,称为右边检验

类似的,形如

H0:μμ0H1:μ<μ0

的假设检验,称为左边检验

右边检验和左边检验,统称为单边检验

感谢您对我的支持,让我继续努力分享有用的技术与知识点!
0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!